Chemistry 233 Chapter 11 Problem Set - Pt. 1 (Substitution Reactions)

1. Consider the S_N 2 reaction shown below and answer the following questions.

Br + NaSCH₃ acetone S_{CH₃} + Na + Br

- A. Write the rate law for the reaction.
- B. Identify the nucleophile and the electrophile in the reaction.
- C. State how each of the following factors would affect the rate of the reaction.
 - a. Increasing the concentration of 1-bromopropane.
 - b. Decreasing the concentration of NaSCH₃ by one-half.
 - c. Changing 1-bromopropane to 2-bromopropane.
 - d. Changing 1-bromopropane to 1-iodopropane.
 - e. Changing NaSCH₃ to CH₃OH.
- 2. Consider the $S_N 1$ reaction shown below and answer the following questions.

- A. Write the rate law for the reaction.
- B. Identify the nucleophile, the electrophile, and the reaction solvent.
- C. State how each of the following factors would affect the rate of the reaction.
 - a. Increasing the concentration of the alkyl halide.
 - b. Increasing the concentration of $HOCH_3$.
 - c. Replacing HOCH₃ with NaOCH₃.
 - d. Changing the alkyl halide from a bromide to an iodide.
 - e. Changing the alkyl halide to 1-bromopropane.

3. For each of the following pairs, circle the one that will proceed faster by an S_N2 reaction mechanism.

$$Br$$
 + NaSCH₃ vs Br + HSCH₃

4. For each of the following pairs, circle the one that will proceed faster by an S_N1 reaction mechanism.

$$+$$
 NH₃ vs $+$ NH₂

5. Explain why the two reactions below provide constitutionally different products.

6. Assuming each reaction below undergoes nucleophilic substation, predict the mechanism ($S_N 1$ or $S_N 2$) and draw the major product. Include stereochemistry where appropriate.

DMSO

$$H_2O$$

$$H_2O$$

$$\begin{array}{c} \bigcirc\\ \text{DMSO} \end{array}$$

7. Explain why the reaction below does not provide any products from nucleophilic substation.

8. Show the complete electron pushing mechanism for each of the following reactions. *You do not need to show stereochemistry in the mechanism.*

D is just a heavy isotop of H.

$$H_2O$$
 $+$ HBr